Solutions of a system of second-order ordinary differential equations
نویسندگان
چکیده
منابع مشابه
C-approximate Solutions of Second-order Singular Ordinary Differential Equations
In this work a new method is developed to obtain C1-approximate solutions of initial and boundary-value problems generated from a one parameter second order singular ordinary differential equation. Information about the order of approximation is also given by introducing the so called growth index of a function. Conditions are given for the existence of such approximations for initial and bound...
متن کاملLecture 18: Ordinary Differential Equations: Second Order
2. General Remarks Second order ODEs are much harder to solve than first order ODEs. First of all, a second order linear ODE has two linearly independent solutions and a general solution is a linear combination of these two solutions. In addition, many popular second order ODEs have singular points. Except for a few cases, the solutions have no simple mathematical expression. However, there is ...
متن کاملA Semi-Analytical Method for Solutions of a Certain Class of Second Order Ordinary Differential Equations
This paper presents the theory and applications of a new computational technique referred to as Differential Transform Method (DTM) for solving second order linear ordinary differential equations, for both homogeneous and nonhomogeneous cases. For the robustness and efficiency of the method, four examples are considered. The results indicate that the DTM is reliable and accurate when compared t...
متن کاملUn-Reduction of Systems of Second-Order Ordinary Differential Equations
In this paper we consider an alternative approach to “un-reduction”. This is the process where one associates to a Lagrangian system on a manifold a dynamical system on a principal bundle over that manifold, in such a way that solutions project. We show that, when written in terms of second-order ordinary differential equations (SODEs), one may associate to the first system a (what we have call...
متن کاملGeneralized Submersiveness of Second-order Ordinary Differential Equations
We generalize the notion of submersive second-order differential equations by relaxing the condition that the decoupling stems from the tangent lift of a basic distribution. It is shown that this leads to adapted coordinates in which a number of first-order equations decouple from the remaining secondorder ones.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Miskolc Mathematical Notes
سال: 2000
ISSN: 1787-2405,1787-2413
DOI: 10.18514/mmn.2000.30